Cosmology under the fractional calculus approach

نویسندگان

چکیده

ABSTRACT Fractional cosmology modifies the standard derivative to Caputo’s fractional of order ?, generating changes in General Relativity. Friedmann equations are modified, and evolution species densities depends on ? age Universe tU. We estimate stringent constraints using cosmic chronometers, Type Ia supernovae, joint analysis. obtain $\mu =2.839^{+0.117}_{-0.193}$ within 1? confidence level providing a non-standard acceleration at late times; consequently, would be older than estimations. Additionally, we present stability analysis for different values. This identifies late-time attractor corresponding power-law decelerated solution < 2. Moreover, non-relativistic critical point exists > 1 sink is power law if 2 an accelerated 2, consistent with mean values obtained from observational Therefore, both flat Friedmann–Lemaître–Robertson–Walker Bianchi I metrics, modified provide under this paradigm without introducing dark energy component. approach could new path tackling unsolved cosmological problems.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cobordism Effects in the Regge Calculus Approach to Quantum Cosmology

We study the ground state wave function for a universe which is topologically a lens space within the Regge calculus approach. By restricting the four dimensional simplicial complex to be a cone over the boundary lens space, described by a single internal edge length, and a single boundary edge length, one can analyze in detail the analytic properties of the action in the space of complex edge ...

متن کامل

Matrix Approach to Discrete Fractional Calculus

A matrix form representation of discrete analogues of various forms of fractional differentiation and fractional integration is suggested. The approach, which is described in this paper, unifies the numerical differentiation of integer order and the n-fold integration, using the so-called triangular strip matrices. Applied to numerical solution of differential equations, it also unifies the sol...

متن کامل

A Fractional Calculus Approach to the Mechanics of Fractal Media

Based on the experimental observation of the size effects on the structural behavior of heterogeneous material specimens, the fractal features of the microstructure of such materials is rationally described. Once the fractal geometry of the microstructure is set, we can define the quantities characterizing the failure process of a disordered material (i.e. a fractal medium). These quantities sh...

متن کامل

On certain fractional calculus operators involving generalized Mittag-Leffler function

The object of this paper is to establish certain generalized fractional integration and differentiation involving generalized Mittag-Leffler function defined by Salim and Faraj [25]. The considered generalized fractional calculus operators contain the Appell's function $F_3$ [2, p.224] as kernel and are introduced by Saigo and Maeda [23]. The Marichev-Saigo-Maeda fractional calculus operators a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Monthly Notices of the Royal Astronomical Society

سال: 2022

ISSN: ['0035-8711', '1365-8711', '1365-2966']

DOI: https://doi.org/10.1093/mnras/stac3006